The L p Stability of Relaxation Rarefaction Profiles

نویسنده

  • Hailiang Liu
چکیده

We consider the large time behavior of solutions for a hyperbolic relaxation system. For a certain class of initial data the solution is shown to converge to relaxation rarefaction profiles at a determined asymptotic rate. The result is established without the smallness conditions of the wave strength and the initial disturbances. 2001 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The L P Stability of Relaxation Rarefaction Prooles

We consider the large time behavior of solutions for a hyperbolic relaxation system. For a certain class of initial data the solution is shown to converge to relaxation rarefaction prooles at a determined asymptotic rate. The result is established without the smallness conditions of the wave strength and the initial disturbances.

متن کامل

Stability of Viscous Shock Profiles for Dissipative Symmetric Hyperbolic-parabolic Systems

Combining pointwise Green’s function bounds obtained in a companion paper [MZ.2] with earlier, spectral stability results obtained in [HuZ], we establish nonlinear orbital stability of small amplitude viscous shock profiles for the class of dissipative symmetric hyperbolic-parabolic systems identified by Kawashima [Kaw], notably including compressible Navier–Stokes equations and the equations o...

متن کامل

Stability of Large-Amplitude Shock Profiles of General Relaxation Systems

Abstract. Building on previous analyses carried out in [24, 27], we establish L1 ∩ H2 → L nonlinear orbital stability, 1 ≤ p ≤ ∞, with sharp rates of decay, of large-amplitude Lax-type shock profiles for a general class of relaxation systems that includes most models in common use, under the necessary conditions of strong spectral stability, i.e., stable point spectrum of the linearized operato...

متن کامل

Nonlinear Stability of Rarefaction Waves for the Compressible Navier-stokes Equations with Large Initial Perturbation

The expansion waves for the compressible Navier-Stokes equations have recently been shown to be nonlinear stable. The nonlinear stability results are called local stability or global stability depending on whether theH1−norm of the initial perturbation is small or not. Up to now, local stability results have been well established. However, for global stability, only partial results have been ob...

متن کامل

Stability of Jin-xin Relaxation Shocks

We examine the spectrum of shock profiles for the Jin-Xin relaxation scheme for systems of hyperbolic conservation laws in one spatial dimension. By using a weighted norm estimate, we prove that these shock profiles exhibit strong spectral stability in the weak shock limit.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001